Polishing:

Enhancing Data Quality by Repairing Imperfections

Choh Man Teng

The Problem

- Causes of data imperfections
 - Instrument failures
 - Less than ideal observation conditions
 - Recording and archival constraints
- Imperfect data are less useful than clean data but still contain valuable information
- In many cases perfect data are unobtainable

Objectives

- Identify possible imperfections in the data and correct the problematic portions
 - As opposed to discarding the corrupted portions wholesale
- Advantages
 - Less wastage: Better data, and more of them
 - Higher quality results from higher quality data
 - Recover information otherwise not available

Overview

Polishing

- Make use of the dependency relationship between different parts of the data
- Prediction
 - Identify corrupted parts and suggest correction
 - Predictions based on models built from original data
 - Candidate repairs: derived from disagreement between predicted and observed/recorded values
- Adjustment
 - Selectively carry out the suggested changes
 - Criteria: improvement in overall fitness/accuracy of the model

MODIS Data

(Moderate Resolution Imaging Spectroradiometer)

- Vegetation indices and landcover products
- Example imperfections
 - Instrument failures: missing entire observation cycles
 - Cloud cover: missing/distorted values

Data Assembly

- MODIS products
 - NDVI/EVI (MOD13A2)
 - Normalized Difference Vegetation Index Enhanced Vegetation Index
 - Landcover (MOD12Q1)
- One year of data from October 2000, every 16 days
- Sampled uniformly from all land tiles
 - excluding non-vegetation pixels (water, snow/ice, etc.)
- Entire observation cycles missing in June 2001
 - need base value for corresponding variables
 - Realigned the data based on seasons (northern/southern hemispheres)

Simulating Data Corruption

- Adding Gaussian noise to each variable
 - Mean: 0; standard deviation: 0-4000(range of VI values: -2000 to 10000)
- Knocking out variable values randomly
 - Missing percentage: 0-40%

Experiments

- Base classifier: decision trees
- Ten fold cross validation
- Compared unpolished and polished data

Evaluation

- Classification characteristics
 - Categorical accuracy (match/mismatch)
 - Classification confidence
 - Classifier size
- Proximity $(x_i: original, y_i: corrupted, z_i: polished)$
 - Net reduction in overall corruption $\sum_i \left(|y_i \text{-} x_i| \text{-} |z_i \text{-} x_i| \right) / \sum_i |y_i \text{-} x_i|$
 - Percentage of correct adjustment $\sum_{|yi-xi|>|zi-xi|} (|y_i-x_i|-|z_i-x_i|) \ / \ \sum_i \ |\ |y_i-x_i|-|z_i-x_i| \ |$
 - With respect to original data point and nearest neighbor

Classification Accuracy: Gaussian noise (MODIS vegetation indices and landcover)

Classifier Size: Guassian noise

Noise (Standard deviation of Gaussian/Missing percentage)

Noise (Standard deviation of Gaussian/Missing Percentage)

^		

Proximit	У	Net F (-NN	Reduction () (+NN)	Correct (-NN)	Adjustment (+NN)
0/0				0.0	38.3
500/10		0.7	2.9	53.1	83.8
1000/20		1.9	3.8	61.1	91.5
1500/30		1.6	3.5	61.5	91.6
2000/40		2.3	3.4	71.7	94.4
				I	

Some Observations

- A corrupted data point can be adjusted away from the original point but towards another clean data point
- Polishing decreased the overall corruption only a little but most of its adjustments were "correct", and the adjustments contributed to improved classification performance
- Important to have meaningful characterization of "good" corrections

Missing Values

- Special case of data corruption
 - Corrupted values can be readily located (missing)
- Vegetation indices are related temporally
 - Missing VI's can be filled by interpolation
- Compared interpolation and polishing for filling in missing values

Some Observations

- Missing values are well tolerated but incorrect values lead to quick deterioration of classification performance
- Perhaps the data set contains highly redundant information (correlated variables)
- Interpolation can flatten useful variations in the pattern
- Effects of: non-random missing patterns; sparser and less redundant data